The diving physiology of bottlenose dolphins (Tursiops truncatus). I. Balancing the demands of exercise for energy conservation at depth.
نویسندگان
چکیده
During diving, marine mammals must rely on the efficient utilization of a limited oxygen reserve sequestered in the lungs, blood and muscles. To determine the effects of exercise and apnea on the use of these reserves, we examined the physiological responses of adult bottlenose dolphins (Tursiops truncatus) trained to breath-hold on the water surface or to dive to submerged targets at depths between 60 and 210 m. Changes in blood lactate levels, in partial pressures of oxygen and carbon dioxide and in heart rate were assessed while the dolphins performed sedentary breath-holds. The effects of exercise on breath-hold capacity were examined by measuring heart rate and post-dive respiration rate and blood lactate concentration for dolphins diving in Kaneohe Bay, Oahu, Hawaii. Ascent and descent rates, stroke frequency and swimming patterns were monitored during the dives. The results showed that lactate concentration was 1.1+/-0.1 mmol l(-1) at rest and increased non-linearly with the duration of the sedentary breath-hold or dive. Lactate concentration was consistently higher for the diving animals at all comparable periods of apnea. Breakpoints in plots of lactate concentration and blood gas levels against breath-hold duration (P(O2), P(CO2)) for sedentary breath-holding dolphins occurred between 200 and 240 s. In comparison, the calculated aerobic dive limit for adult dolphins was 268 s. Descent and ascent rates ranged from 1.5 to 2.5 m s(-1) during 210 m dives and were often outside the predicted range for swimming at low energetic cost. Rather than constant propulsion, diving dolphins used interrupted modes of swimming, with more than 75 % of the final ascent spent gliding. Physiological and behavioral measurements from this study indicate that superimposing swimming exercise on apnea was energetically costly for the diving dolphin but was circumvented in part by modifying the mode of swimming.
منابع مشابه
The diving physiology of bottlenose dolpins (Tursiops truncatus): I. Balancing the demands of exercise for energy conservation at depth
متن کامل
The diving physiology of bottlenose dolphins (Tursiop truncatus). III Thermoregulation at depth
متن کامل
The diving physiology of bottlenose dolphins (Tursiops truncatus). II. Biomechanics and changes in buoyancy at depth.
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of submergence and will presumably increase in importance as the animals perform progressively longer dives. To determine the effect of a limited oxygen supply on locomot...
متن کاملThe diving physiology of bottlenose dolphins (Tursiops truncatus). III. Thermoregulation at depth.
During diving, marine mammals initiate a series of cardiovascular changes that include bradycardia and decreased peripheral circulation. Because heat transfer from thermal windows located in peripheral sites of these mammals depends on blood flow, such adjustments may limit their thermoregulatory capabilities during submergence. Here, we demonstrate how the thermoregulatory responses of bottlen...
متن کاملThe dive response redefined: underwater behavior influences cardiac variability in freely diving dolphins.
A hallmark of the dive response, bradycardia, promotes the conservation of onboard oxygen stores and enables marine mammals to submerge for prolonged periods. A paradox exists when marine mammals are foraging underwater because activity should promote an elevation in heart rate (f(H)) to support increased metabolic demands. To assess the effect of the interaction between the diving response and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 202 Pt 20 شماره
صفحات -
تاریخ انتشار 1999